
28 The Delphi Magazine Issue 47

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Date Stamp
Efficient date calculations
for business applications

Iwas checking up on my vacation
entitlement the other day (my

wife, Donna, had just passed the
Bar examination for Colorado, and
I needed to book as holiday the day
of her swearing-in as a real lawyer)
when I noticed something bizarre. I
joined TurboPower Software on
1 May 1993 and my holiday year
therefore runs from 1 May of one
year to 30 April of the next. Seems
easy enough, yet our internal com-
pany website seemed to think that
my current holiday year ran out on
6 May 1999. Huh? It turns out that
the page is generated automati-
cally from an Excel spreadsheet
and the formula was subtly wrong.

A couple of months before that
someone was asking on one of our
newsgroups about calculating the
number of business days between
two dates. Not the number of days
between two dates, mind you (a
common enough request on the
Delphi newsgroups), but the
number of business days. And then,
just slightly before that, someone
else wanted some other business
date arithmetic.

Enough already. I can spot a
trend if it bites me on the leg often
enough. Especially if I can convert
it into an Algorithms Alfresco arti-
cle. Hence this month’s column on
efficient date algorithms and
calculations.

What we shall do in this article is
devise a compact date representa-
tion with which we can do efficient
date arithmetic. The date repre-
sentation we’ll design will be opti-
mized for business use. We’ll then
explore adding days and months to
a date, and fiddling around with
business date arithmetic.

Poison Arrow
So, first question first. Why have
another date type? Isn’t TDateTime
good enough? Frankly, no. Mind
you, it does have one redeeming
advantage: it’s a standard for

Delphi (although it has a different
definition in Delphi 1 compared to
the later Delphi compilers). But,
oh, the other problems... It’s a
floating point type for a start, with
the fractional part being the time
(basically half the 8-byte storage
size is unused for doing arithmetic
with dates: you could make do with
a longint quite easily). Because it
is a floating point type and you
want to do what amounts to integer
arithmetic, you have to worry
about whether you call Trunc or
Round to convert to an integer. Also,
although the conversions between
a TDateTime variable and day-
month-year representation work,
they’re hardly the model of effi-
ciency. When you do a lot of date
arithmetic (and in my previous job
on the swaps trading desk of a
large German bank in London,
there was a lot) you need efficiency
in converting to day-month-year
and back again. One of the reasons
for this inefficiency is the sheer
range of possible dates that
TDateTime covers, the vast majority
of which we’ll never encounter or
use (unless our PCs survive us by
thousands of years). And there’s
one mighty kicker for people who
use both 16- and 32-bit Delphi: the
Delphi 1 TDateTime is not the same
as the TDateTime for later versions
of Delphi (for Delphi 1, day 1 is 1
January 0001, but for the other
Delphis, it’s 31 December 1899). If
you write out a TDateTime value to a
file in Delphi 1 and read it in Delphi
2, you won’t get the same date.

So, in this article we shall invent
a better mousetrap. Of course,
we’ll provide a way to get from our
mousetrap to Delphi’s. And you
can bet your bottom dollar we shall
be making sure this mousetrap is
Y2K-compliant.

Having decided that it would be
a good thing to have a new date
format, we need a little background
exposition. We shall be dealing

with Gregorian dates, that is, dates
from the Western Gregorian calen-
dar (in particular, I’m referring to
the rule for leap years). We shall be
building a set of routines for gen-
eral present-day business use, in
particular, over a range of just 400
years, from 1800 to 2200. That
should be easily sufficient for
modern business applications. We
certainly won’t be dealing with the
problems caused by the crossover
from the Julian calendar to the
Gregorian calendar (for an excel-
lent discussion of such date calcu-
lations, see Delphi For Time
Travellers by Brandon Smith in
Issue 34, June 1998). I also won’t be
talking about what a leap year is or
why they’re needed, I shall assume
that you all know... Anyway, I
couldn’t do better than Brandon’s
article.

Just so that you can see where
we’re going with this article, we’ll
be defining the new type, convert-
ing from year-month-day to it, and
vice versa, calculating the day of
the week for a date, finding the
number of days and months
between two dates, adding days
and months to a date, looking at
how to calculate business dates,
calculating Easter Day for a given
year, and finally investigating the
wacky world of bond dates. Whew!
With all that we’d better get
started.

All Of My Heart
Right then, definition of a date. The
dates we’ll be talking about in this
article are limited to the range
from 1 January 1800 to 31 Decem-
ber 2199. 400 years (97 of them
leap), or 146,097 days. This latter

30 The Delphi Magazine Issue 47

value tells us immediately that rep-
resenting a date as the number of
days from 1 January 1800 we’ll
need at least a longint to store the
date, since we’d require at least 18
bits. So, our date type, TaaDate, is a
longint, with possible values from
0 (which is 1 January 1800) to
146,096 (which is 31 December
2199). Values outside this range
are deemed invalid and, if encoun-
tered, will cause an exception to be
raised. Note that since we’re hold-
ing date values as the number of
days from a base date, we haven’t
had any Y2K problems yet.

Well that was easy! What’s next?
We shall need a couple of utility
routines before going too much
further. The first one will return
whether a year value is a leap year
or not, where the year value is
something between 1800 and 2199
(anything else causes an exception
to be raised). Again, I’m avoiding
any Y2K problem: no year values
between 0 and 99 are allowed in
this routine. The leap year rule is
usually stated as ‘a year is a leap
year if it is divisible by 4, but not if it
is divisible by 100, unless it is also
divisible by 400’. Well, phooey, in
our routine a leap year is one that
is divisible by 4, unless it happens
to be 1800, 1900 or 2100. Simple,
eh? Listing 1 has the aaIsLeapYear
routine.

The next handy routine is one
that returns the number of days in
a given month. We all know the rule
here, indeed schoolchildren are
taught a little mnemonic rhyme to

function aaDaysInMonth(Y, M : integer) : integer;
begin
if (Y < MinYear) or (Y > MaxYear) or

(M < 1) or (M > 12) then
raise Exception.Create(
'aaDaysInMonth: invalid year and/or month');

if (M = 2) and IsLeapYearPrim(Y) then
Result := DaysInLeapFeb

else
Result := DaysInMonth[M];

end;
function aaIsLeapYear(Y : integer) : boolean;
begin
if (Y < MinYear) or (Y > MaxYear) then
raise Exception.Create(
'aaIsLeapYear: invalid year, should be 1800-2199');

Result := ((Y mod 4) = 0) and
(Y <> 1800) and (Y <> 1900) and (Y <> 2100);

end;
function aaIsValidYMD(Y, M, D : integer) : boolean;
begin
Result := false;
{easy checks}

if (Y < MinYear) or (Y > MaxYear) then
Exit;

if (M < 1) or (M > 12) then
Exit;

if (D < 1) then
Exit;

{full check on day}
if (D > 28) then begin
{if February..}
if (M = 2) then begin
{if leap year..}
if ((Y mod 4) = 0) and (Y <> 1800) and (Y <> 1900) and
(Y <> 2100) then begin
if (D > DaysInLeapFeb) then
Exit;

end else if (D > DaysInFeb) then
Exit;

end else if (D > DaysInMonth[M]) then
Exit;

end;
{otherwise it's OK}
Result := true;

end;

➤ Listing 1: Building-block date
routines. help them remember. We’ll pass in

the year (1800 to 2199) and the
month (1 to 12) and aaDaysInMonth
will return the number of days in
that particular month. Internally,
we’ll have to make use of the
aaIsLeapYear function for Febru-
ary, otherwise we grab the value
out of an internal const array. It’s
Listing 1 again for the details.

The final simple routine is one to
validate a year-month-day triplet
to be a real date. The aaIsValidYMD
function uses both the above rou-
tines to do its stuff (essentially we
check that the year is between
1800 and 2199, the month is
between 1 and 12, and the day is
between 1 and the number of days
in that particular month). Again
see Listing 1.

Show Me
OK. Enough of the easy stuff. Time
for some conversions. The first one
we shall tackle is converting a year-
month-day triplet to a date value,
aaYMDToDate. In the majority of date
libraries I’ve seen (I used to collect
these for fun), the author launches
into this majestic, bizarre calcula-
tion, and awards himself points if
he can get the entire thing into one
statement. EncodeDate in Delphi’s
SysUtils is not that bad, consider-
ing. Essentially, in layman’s terms,
the calculation goes like this: cal-
culate the number of complete
years from the base date to the
date we are trying to convert.
Count the number of leap years in
that range. Multiply the number of
years by 365 and add in the number
of leap years. Now count the
number of days in the complete

months up to the date we’re
encoding (be careful about 29 Feb-
ruary, if this is a leap year). Add
that to our subtotal. Finally add the
day value. Phew! The calculation is
not that bad, but just wait until you
try it the other way round.

Anyway, the only thing that can
be said about this calculation is
that it’s fairly compact, but there
isn’t really a lot we can do to speed
it up. So, put it to one side, and let’s
rethink it in our terms. Part one of
the calculation is calculating the
number of days from 1 January
1800 to 1 January of the year we’re
concerned with. Well, heck, for a
given year, that’s always fixed, so
why don’t we calculate all the pos-
sible values (400 of them) and
store them in an array (the
FirstJanuarys array), once and
once only at start-up? Agreed, this
is one chunky array (400 longint
values, 1,600 bytes) but it’s going
to be a major speedup. The calcu-
lation then reduces to a simple
array access, wham bam. It’s a
graphic example, in a way, of the
tradeoff of speed versus size: to get
better speed we shall use this big
array (there’s going to be another
benefit to having this array, just
wait and see).

Well, what about part two of the
calculation, calculating the
number of days in the complete
months in this year? Let’s play the
same trick, pre-calculating the
values. This time we need 24
values, one set of 12 for a leap year,
and one set of 12 for a normal year.
Again, we can do this at unit initial-
ization time; again, the calculation
reduces to an array access.

July 1999 The Delphi Magazine 31

With these two arrays, the con-
version of a year-month-day triplet
becomes a mere addition. One
statement, he said, awarding him-
self bonus points. Listing 2 shows
the aaYMDToDate routine, and the
pre-calculation of the two arrays.
Note that the year value must be
four digits: still no Y2K problems.

OK, what about the opposite
conversion, converting a date
value to a year-month-day triplet?
This calculation is, frankly, dread-
ful. If you have the source code to
Delphi’s VCL, check out the imple-
mentation of DecodeDate in
SYSUTILS.PAS. In Delphi 4, it’s 45
lines of code, with no comments.
Generally it proceeds a bit like this.
First, estimate the year value, by
dividing the day number by 365.25,
the average number of days in a
year (some implementations esti-
mate the number of 4-year periods
by dividing by 1461, the number
of days in a 4-year period that
includes a leap year, and then fine
tune by calculating the number of
years left over). Once you’ve calcu-
lated the year, fine tune it by calcu-
lating the day number of 1 January
of that year (or the previous, or the
next) and checking which year the
date falls in. From that point, it’s a
fairly easy process to calculate the
month number (move through the
months of that year, subtracting

the days in each month until the
number of days left is less than the
days in the succeeding month).
The Delphi implementation has a
couple of other wrinkles to help
speed up this basic algorithm.

So what are we going to do in our
implementation? Well, not that lot,
for a kick-off. I’ve got other things
to talk about, thanks very much.
Step back again. Remember that
we have an array containing all of
the dates for all of the 1 Januarys in
our accepted range. To calculate
the year value for a given date
using this array, we’d just find the
first element in that array that is
greater than the date we have; the
year is then given by the index of
the previous element. I love it when
a plan comes together! And hang
on just a moment longer! We have
another handy array containing
the number of days prior to each
month in a normal and in a leap
year. Subtract the date of 1 January
for this year from the date, find the
first element in the month cumula-
tive days array that is greater than
the number of days we have left,
and the month is the index of the
previous element. Subtracting that
value from the remaining days
gives us the day part. Yowsa!

Think Again
Let’s just have a quick aside here
on searching algorithms. The algo-
rithm I just outlined requires us to
find the first element in a sorted

array that is greater than a particu-
lar value. It turns out that there are
two general algorithms to do this,
and one specific algorithm.

The first algorithm is called
sequential search, and it goes like
this: start at the first element of the
array and step though the array
until we reach the first element
that is greater than the value we
are looking for. We could run off
the end of the array, but to avoid
this we can set another element at
the end of the array, called the sen-
tinel, that has a value greater than
any we shall be looking for; in our
specific case, the array initializa-
tion will already have done this for
us. I’m sure that you have all coded
this type of search before. Usually
it’s coded as a for loop, with a
Break statement to exit the loop
early if the required element was
found. If you are not very careful,
the quick-and-dirty code has an
interesting loophole. Listing 3
shows a sequential search on a
sorted array, coded with a for
loop, that has the bug. Or does it?
See if you can spot it before contin-
uing. It looks innocuous enough:
go through the loop trying to find
the element we want; if we find it,
break out of the loop, if we don’t
find it, fall out of the bottom of the
loop. Well, believe it or not, this
code does not work in Delphi 1. It
does work in the current versions
of 32-bit Delphi, but is not guaran-
teed to. The bug is that the value of

➤ Listing 2: Converting
year-month-day to date.

type
PFirstJanuarys = ^TFirstJanuarys;
TFirstJanuarys = array [0..400] of TaaDate;
PCumulativeDays = ^TCumulativeDays;
TCumulativeDays = array [boolean, 0..12] of word;

var
FirstJanuarys : PFirstJanuarys;
CumulativeDays : PCumulativeDays;

function aaYMDToDate(Y, M, D : integer) : TaaDate;
var
IsLeap : boolean;

begin
if not aaIsValidYMD(Y, M, D) then
raise Exception.Create(Format(
'aaYMDToDate: invalid year %d, month %d, day %d',
[Y, M, D]));

IsLeap := ((Y mod 4) = 0) and (Y <> 1800) and
(Y <> 1900) and (Y <> 2100);

Result := FirstJanuarys^[Y-MinYear] +
CumulativeDays^[IsLeap, pred(M)] + pred(D);

end;
procedure InitFirstJans;
var
NextValue : longint;
Year : integer;

begin
{allocate the memory}
New(FirstJanuarys);
{initialize the values}
NextValue := 0;
for Year := MinYear to MaxYear do begin
FirstJanuarys^[Year-MinYear] := NextValue;

if aaIsLeapYear(Year) then
inc(NextValue, 366)

else
inc(NextValue, 365)

end;
FirstJanuarys^[400] := NextValue;

end;
procedure InitCumulativeDays;
var
NextValue : longint;
Month : integer;

begin
{allocate the memory}
New(CumulativeDays);
{initialize the non-leap year values}
NextValue := 0;
for Month := 1 to 12 do begin
CumulativeDays^[false, pred(Month)] := NextValue;
inc(NextValue, DaysInMonth[Month]);

end;
CumulativeDays^[false, 12] := NextValue;
{initialize the non-leap year values}
NextValue := 0;
for Month := 1 to 12 do begin
CumulativeDays^[true, pred(Month)] := NextValue;
if (Month = 2) then
inc(NextValue, DaysInLeapFeb)

else
inc(NextValue, DaysInMonth[Month]);

end;
CumulativeDays^[true, 12] := NextValue;

end;

32 The Delphi Magazine Issue 47

the loop counter is not defined
when you fall out of the bottom of a
loop, it’s only defined if you Break
out of it (read it in your Object
Pascal Language Guide if you don’t
believe me). The code is implicitly
assuming that the value of Inx,
after the loop exits, is one more
than the final value in the for state-
ment. Luckily this is so for Delphi 2
through 4, but it is not so for Delphi
1. With the latter compiler, the
value of Inx after the loop com-
pletes normally is the final value in
the for statement. And I warn you
that this fortuitous state of affairs
may change in the future, if Inprise
decide to change the compiler
optimizer. Anyway, enough moral-
izing, Listing 4 has the fixed code
for a sequential search through the
FirstJanuarys array.

The problem with the sequential
search is that it requires, on aver-
age, n/2 comparisons to find a
single element in an array with n of
them. Can we do better than this?
Since the array is sorted we could
perform a binary search instead,
where we take advantage of the
fact that the elements in the array
are in order of increasing value.

Binary search is a divide and
conquer algorithm that works like
this. Look at the element in the
middle of the array. Is the value we
are trying to find less than, equal

for Inx := 0 to pred(ArrayCount) do
if MyArray[Inx] >= GivenValue then
Break;

if Inx = ArrayCount then
..all elements less than given value..

else
..found first element >= given value..

➤ Listing 3: Buggy sequential search routine.

FoundIt := false;
L := 0;
R := 400;
while (L <= R) do begin
Mid := (L + R) div 2;
if (aDate < FirstJanuarys^[Mid]) then
R := pred(Mid)

else if (aDate > FirstJanuarys^[Mid]) then
L := succ(Mid)

else {equal} begin
FoundIt := true;
Break;

end;
end;
if FoundIt then
Inx := Mid

else
Inx := L-1;

➤ Listing 5: Binary search through FirstJanuarys array.

FoundIt := true;
for Inx := 0 to 400 do
if (aDate < FirstJanuarys^[Inx]) then begin
FoundIt := true;
Break;

end;
if FoundIt then
dec(Inx)

else
Inx := 399;

➤ Listing 4: Correct sequential search on FirstJanuarys array.

to, or greater than this middle ele-
ment? If it’s equal, we’re finished. If
our value is less than the middle
element, what can we say? Well,
since the array is sorted, we can
say that the element we want, if
anywhere, is going to be in the first
half of the array. We can ignore the
other half of the array, it’s not
going to be found there. We can
make a similar argument if the
value we want is greater than the
middle element: ignore the first
half of the array. In any case, with
just one comparison, we have
halved the number of elements we
have to search through. We can
now do the same test with the
half-array we have left (find the
middle element in the half-array
and compare), resulting in a
quarter-array to look through. We
can continue this process until the
sub-sub-sub-array we have left has
but one element, which is either
the one we want or not. This is
much better: by halving the
number of elements we have to
check each time, we are doing

log2(n) comparisons for an array of
n elements (for example, if the
array had 128 elements we’d per-
form 7 comparisons in the worst
case, compare that with 64 com-
parisons on average, 128 in the
worst case for the sequential
search).

Listing 5 has the code for a
binary search through the
FirstJanuarys array.

Alphabet City
As it happens, it can be proven
that, for a set of data values about
which we know nothing except
that they are sorted, binary search
is the best we can do. However, if
we do know something more about
the data values, we could take
advantage of this extra knowledge
and perhaps do better. And it is
true that we do know something
else about the FirstJanuarysarray.

Suppose you have a phone book
in your hands, and have to look up
my name, Bucknall. If you were a
computer application and had
been coded to do an efficient
binary search, you’d start of in the
middle of the book, determine that
Bucknall is in the first half, find the
middle of the first half, determine
that Bucknall is before that, and
continue until you’d found my
entry. For a phone book with
100,000 entries you’d do about 17
comparisons. However, you, the
person, certainly wouldn’t do that.
You’d estimate that the Bs start
near the front of the book and open
it there first. You’d then use your
knowledge of the alphabet to zero
in faster to Bucknall than the
binary search’s 17 comparisons.
This kind of search is known as an
interpolation search: you are
making use of some extra knowl-
edge of the distribution of the data
values to improve your chances of
striking lucky early on. Since B is
one thirteenth of the way through
the alphabet, the names beginning

34 The Delphi Magazine Issue 47

with B would be roughly one
thirteenth of the way into the book
and you’d eliminate a much larger
chunk of the book in one go.

So what do we know about the
distribution of the values in the
FirstJanuarys array? Well, how
about this: each value is either 365
or 366 greater than its predeces-
sor. Can we take advantage of this?
Certainly we can. Divide the date
by 365 and use the answer as an
index into the array. The element
we get will either be the one we
want, or if it is greater than the
given date, the element before is
the one we want. One comparison.

To see why this is so, consider
the first 6 elements of this array: 0,
365, 730, 1095, 1460, 1826, corre-
sponding to the years 1800 to 1805.
The difference between the last
two is 366, whereas between the
others, it’s 365. This corresponds
to the fact that 1800 was not a leap
year but 1804 was. Suppose we
were trying to find the year for date
364 (31 December 1800). Divide by
365 to give the index of 0 and hence
a year of 1800. This is correct. For
date 365 (1 January 1801), we
divide by 365 to give an index of 1
and hence a year of 1801, again cor-
rect. The first interesting value is
1825 (31 December 1804). Divide
by 365 to give an index of 5 (it’s an
exact division, no remainder). Ele-
ment 5 is 1826 which is greater
than the one we are looking for, so
we decrement the index to 4 to give
a year of 1804. Date 1826 (1 January
1805) divided by 365 gives an index
of 5 or a year of 1805, which is
correct. Date 146096 (31 December

2199) divided by 365 gives an index
of 400. The element at index 400
has a value of 146097, greater than
the date we are looking for and so
we reduce the index by 1 to give
399, or a year of 2199. In fact, the
algorithm would break down if we
had a range of years that included
365 leap years, but we don’t, so
let’s not worry about it.

For fun, I coded up the
aaDateToYMD routine to use each of
these different searches to see how
each fared against the other (List-
ing 6 shows that for interpolation
search). If the interpolation search
took 1 unit of time then the binary
search took 1.3 units and the
sequential search 7.6 units.

All very fascinating, but how do
the Algorithms Alfresco routines
compare with Delphi’s EncodeDate
and DecodeDate? Well, in my tests, if
aaYMDToDate took 1 unit of time,
EncodeDate took 3.75 units, and if
aaDateToYMD took 1 unit, DecodeDate
took 3.1 units. As you see, much
better: we can do at least three
times as many calculations than
the standard Delphi routines in the
same amount of time.

When Smokey Sings
Time to go back to more date stuff
after our diversion into searching
algorithms. Finding the number of
days between two TaaDate dates is
a matter of subtracting one from
the other. Finding the date n days
from a given date is a matter of
adding n to the date.

More easy routines. The day of
the week for a date is a good one.
For some reason, Delphi doesn’t

declare an enumerated type for
the days of the week. (Quick, with-
out looking it up, what integer
value for Wednesday does
SysUtils.DayOfWeek return? I con-
fess to having to look it up every
time I use the routine afresh.) So
we’ll declare an enumerated type
called TaaDOW that contains the
values aaSunday to aaSaturday. Cal-
culating the day of the week is
simple in theory: find the modulus
base 7 of the date. However, this
doesn’t give the correct value, it’s
three days off because date 0, 1
January 1800, is a Wednesday not a
Sunday. So we’ll add three to the
date before taking the modulus.

Also, Delphi’s SysUtils unit
defines the ShortDayNames and
LongDayNames arrays so that you
can determine the visible repre-
sentation of a day of the week
value. Since our TaaDOW type is not
an integer, we’ll have to provide a
couple of small routines to return
the string day name for a TaaDOW
value.

Talking of days of the week,
many times you want to know if a
particular date is a Friday, for
example. Well, you could certainly
just call aaDayOfWeek and compare
the result with aaFriday, but it’s
done often enough to warrant
a specific routine called
aaIsDayOfWeek that will check
against any day of the week.

Another handy routine is one to
return the date of the next Friday
from a particular date (or the next
Sunday, or whatever). Enter the
aaNextDayOfWeek function to do just
that, and the aaPrevDayOfWeek rou-
tine to calculate the previous
Friday, or any other day of the
week.

Another good must-have rou-
tine: the date today. This actually
requires different code for 32-bit
than for 16-bit Windows. In 16-bit
we have to make a call to DOS to
get the information and then con-
vert it into a TaaDate value; in 32-bit
we make a call to GetLocalTime and
then convert.

Jealous Lover
All very simple, I’m sure you’ll
agree. I think I’d better get onto
some more difficult stuff otherwise

procedure aaDateToYMD(aDate : TaaDate; var Y, M, D : integer);
var
Inx : integer;
IsLeap : boolean;

begin
if (aDate < 0) or (aDate > MaxDate) then
raise Exception.Create('aaDateToYMD: invalid date');

{use interpolation search to calculate 1 January, & hence the year}
Inx := aDate div 365;
if (aDate < FirstJanuarys^[Inx]) then
dec(Inx);

Y := MinYear + Inx;
IsLeap := ((Inx mod 4) = 0) and (Inx <> 0) and (Inx <> 100) and (Inx <> 300);
{use interpolation search to calculate the month}
aDate := aDate - FirstJanuarys^[Inx];
Inx := (aDate div 32) + 1;
if (aDate < CumulativeDays^[IsLeap, Inx]) then
dec(Inx);

M := succ(Inx);
{calculate the day}
D := aDate - CumulativeDays^[IsLeap, Inx] + 1;

end;

➤ Listing 6: Converting a date to year, month and day values.

July 1999 The Delphi Magazine 35

Our Esteemed Editor will start cut-
ting chunks out of the article. Let’s
see what we can do about adding a
number of months to a date. Before
we start talking about any code, it
would be beneficial to think about
this for a moment. What date
results from adding 3 months to 10
April 1999? Well, in normal usage
we’d work it out to be 10 July 1999.
Seems pretty obvious. What about
adding 3 months to 30 April 1999?
This is where is gets a little more
fuzzy. There is one school of
thought that says, by applying the
implicit rule we just used, the
answer is 30 July, 1999. There’s
another school of thought that
says, well, 30 April is at the end of
the month, so adding 3 complete
months to that date should result
in 31 July 1999. Mmm, ponder on
that whilst I dish up another exam-
ple. What happens if you add 3
months to 29 November 1998? Me,
I’d say the answer was 28 February

1999. Good old Object Professional
from TurboPower had a routine
that would return 1 March 1999 in
that case (with the reasoning that
the answer should be 29 February
1999, which doesn’t exist, but
which could be viewed as 1 day
after the last day of February, ie 1
March), but to be honest I’ve never
known anyone to use that defini-
tion. (For OPRO fans [Count me in!
Ed], the routine is IncDate in the

OpDate unit, although it has been
carried forward into SysTools in
the StDate unit.)

So, I’m sure you can see that
adding months to a date requires
some defining before we put
fingers to keyboard and code it.
Way back when, before my
TurboPower days, I had to make
the same decision about the same
problem. I came up with the con-
cept of ‘sticky’ month ends. If

function aaDateAddMonths(aDate : TaaDate; aMonths : integer; aStickyMonthEnds :
boolean) : TaaDate;

var
Y, M, D : integer;
DaysInM : integer;
StickToMonthEnd : boolean;

begin
aaDateToYMD(aDate, Y, M, D);
StickToMonthEnd := aStickyMonthEnds and (D = DaysInMonthPrim(Y, M));
{calculate the month number from January 1800}
M := (Y - MinYear) * 12 + pred(M) + aMonths;
{if its out of range say so}
if (M < 0) or (M > MaxMonth) then
raise Exception.Create('aaDateAddMonths: calculated date in out of range');

{calculate the new year and month}
Y := (M div 12) + MinYear;
M := succ(M mod 12);
{check to see that the date is in range for the month}
DaysInM := DaysInMonthPrim(Y, M);
if StickToMonthEnd or (D > DaysInM) then
D := DaysInM;

Result := aaYMDToDate(Y, M, D);
end;

➤ Listing 7: Adding a number of months to a date.

➤ Listing 8: Calculating the
number of months and days
between two dates.

function aaDateDiffInMonths(aDate1, aDate2 : TaaDate;
aStickyMonthEnds : boolean; var aDays : integer) :
integer;

var
TempDate : TaaDate;
Y1, M1, D1 : integer;
Y2, M2, D2 : integer;
Date1AtME : boolean;
Date2AtME : boolean;

begin
{make sure that aDate1 is less than aDate2}
if (aDate1 > aDate2) then begin
TempDate := aDate1;
aDate1 := aDate2;
aDate2 := TempDate;

end;
{convert dates to YMD}
aaDateToYMD(aDate1, Y1, M1, D1);
aaDateToYMD(aDate2, Y2, M2, D2);
{make first approximation to answer}
Result := ((Y2 - Y1) * 12) + (M2 - M1);
{if both day numbers are less then 28, we don't have to
worry about any month end calculations}
if (D1 < 28) and (D2 < 28) then begin
{if the first day is less than or equal to the second,
then the day count is just the difference}
if (D1 <= D2) then
aDays := D2 - D1

{otherwise, the month count is one too many, then we
have to count the number of days from Y2/(M2-1)/D1 to
Y2/M2/D2; the former date being Result whole months
from aDate1}
else begin
dec(Result);
dec(M2);
if (M2 = 0) then begin
M2 := 12;
dec(Y2);

end;
if (D1 > DaysInMonthPrim(Y2, M2)) then
D1 := DaysInMonthPrim(Y2, M2);

aDays := aDate2 - aaYMDToDate(Y2, M2, D1);
end;
Exit;

end;
{if we reach this point, one or both of the dates might be
at a month end, so *beware*}
Date1AtME := D1 = DaysInMonthPrim(Y1, M1);
Date2AtME := D2 = DaysInMonthPrim(Y2, M2);
{the easiest case is both days are at month ends and we

want sticky month ends: we're done after setting aDays
to zero}
if aStickyMonthEnds and Date1AtME and Date2AtME then begin
aDays := 0;
Exit;

end;
{the next easiest cases all use sticky month ends}
if aStickyMonthEnds then begin
{if the first date is at a month end (the second won't
be) then the number of months is one too many, and the
number of days is equal to the second day value}
if Date1AtME then begin {note: Date2AtME = false}
dec(Result);
aDays := D2;
Exit;

end;
{if the second date is at a month end (the first won't
be) then the number of months is correct, and the
number of days is equal to the second day value minus
the first, or zero if this is negative}
if Date2AtME then begin {note: Date1AtME = false}
if D2 >= D1 then
aDays := D2 - D1

else
aDays := 0;

Exit;
end;

end;
{if the second day number is greater or equal to the
first, the number of days is the difference; the number
of months is correct}
if (D2 >= D1) then begin
aDays := D2 - D1;
Exit;

end;
{otherwise, the number of months is one too many, and the
number of days is that from Y2/(M2-1)/D1 to Y2/M2/D2}
dec(Result);
dec(M2);
if (M2 = 0) then begin
M2 := 12;
dec(Y2);

end;
if (D1 > DaysInMonthPrim(Y2, M2)) then
D1 := DaysInMonthPrim(Y2, M2);

aDays := aDate2 - aaYMDToDate(Y2, M2, D1);
end;

36 The Delphi Magazine Issue 47

sticky month ends are in force,
adding a number of months to a
date which is at the end of the
month always results in a date
which is at a month end. Month
ends stick. So 28 February 1999
plus one month is 31 March 1999,
using this mode. If sticky month
ends are not in force, then adding a
month to a date that is a month end
performs no special month end
coercion. 28 February 1999 plus
one month is 28 March 1999, using
this mode. In all cases, if adding a
number of months would result in
a non-existent date, for example 30
January plus one month to ‘give’ 30
February, then the routine would
force the result date back to the
last day of the month concerned.
Listing 7 has the details for the
aaDateAddMonths routine. Notice
that the routine accepts a Boolean
parameter called aStickyMonthEnds
that defines whether sticky month
ends are to be used.

Cute. So how about calculating
the number of months and odd
days between two dates? This is a
great one. If you thought adding a
number of months was compli-
cated enough, check this one out.
The easy example first, to lull you
into a false sense of security. The
number of months between 15
April 1999 and 15 July 1999 is 3
months, I’m sure you’ll agree. Piece
of cake. Or is it? Well, it could be
argued that there are two full
months in between the two dates,
May and June. Then, there are 15
remaining days in April and 15 in
July, to make 30 days. So the
answer should be 2 months and 30
days, no?

No. We take the usual rule that
the whole months are counted
from the lesser date. After all, it
makes sense that if you calculate
the number of months between
two dates and then call aaDate
AddMonths with this number of
months and the lesser date, you
get the greater date. In other words
that the two routines we write
should be complementary. So,
again we shall have to use the
sticky month end concept. If you
read through the code in Listing 8,
you’ll get the idea about this
algorithm.

Ark-Angel
What’s next on the agenda? Busi-
ness date calculations. What we
want to do here is to test whether a
date is a business day, or a week-
end or holiday day instead. Once
we can determine whether a date is
a business day, we shall then want
to calculate how many business
days there are between two dates,
add a number of business days to a
date, and indeed calculate the
nearest business date to a given
date.

The first routine, then, is a
simple Boolean function that
returns whether a date is a busi-
ness day or not. To do this, we
need to know, firstly, what days are
non-business days every week (for
example, Saturday and Sunday in
Western countries) and, secondly,
what days are non-working holi-
days during the year. This latter
one, especially in the US, tends to
be company-specific: for example, I
have a different set of general
holidays than does my wife.

What we’ll do is define a class to
encapsulate non-working time.
The class will have methods to set
the weekend days, and methods to
add and remove holiday dates.
Once a holiday object has been set
up with weekend days and a list of
holidays, a method can be called to
determine if a date is a holiday or
not. Of course, the holiday object
must be persistent: we should be
able to store the object to a stream
and read it back.

Now having this object around,
how do we calculate the number of
business days between two dates?
There’s nothing for it but to be
long-winded, I’m afraid. We have to
step through every date from the
lesser to the greater date, testing
each date encountered to be a
business date, and counting them
as we go. Similarly, for adding a
number of business days to a date,
it’s a step by step process.

Finally, how do you calculate the
nearest business date for a given
date? There are two schools of
thought here, as far as I know. Rule
one is, if the given date is not a busi-
ness day, you calculate the next
business date and use that. If the
given date is a business day then

there’s nothing to do. For certain
businesses, the nearest business
date to a given date cannot be in a
different month: if the given date is
a holiday at the month end, then
the nearest business date is the
last business day of that month. In
other words with rule 1 you always
move forwards, with rule 2 you
generally move forwards, except
at month end when you move
backwards.

I won’t show the business date
arithmetic here, compared with
some of the things we’ve been
looking at here, it’s not too compli-
cated. The code can be found on
this month’s disk.

Many Happy Returns
Also in the unit on the disk, you’ll
find routines to convert to and
from TDateTime values, and to con-
vert to and from TurboPower’s
SysTools dates. I’ve added a con-
version to and from standard ISO
dates as well (ie, week numbers).
I’ve included a routine to take a
TaaDate value and return a string
(the equivalent to DateToStr). It
has a few more formats, including
one that mimics the old Lotus 1-2-3
format, dd-Mmm-yyyy, of which
I’m particularly fond.

And all through the code, there
is nary a two-digit year to be found.
No Y2K problem at all. I’m leaving
all those 2-digit year problems to
SysUtils’s StrToDate function.

I hope you’ve found this article
and code to be of use. We’ve
learned some lessons along the
way: about searching algorithms;
that reducing the scope of routines
whilst keeping them useful is one
way to squeeze more speed; that
date routines can simultaneously
be a pain in the neck and very
interesting.

Julian Bucknall is a Saturday’s
child and works hard for a living.
He also learnt his ABC at an early
age. He can be reached at
julianb@turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.

© Julian M Bucknall, 1999

	Poison Arrow
	All Of My Heart
	Show Me
	Think Again
	Alphabet City
	When Smokey Sings
	Jealous Lover
	Ark-Angel
	Many Happy Returns

